Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Dong Yin, Bao-Han Zhou and An -Xin Wu^{*}

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.112$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl 4,8-dioxo-2,6-di-p-chlorophenyl-1,3,5,7-tetrahydro-2,3a,4a,6,7a,8a-hexaazacyclopenta-[def]fluorene-8b,8c-dicarboxylate

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{6}$, the dihedral angle between the two adjacent five-membered rings in the glycoluril unit is $70.18(9)^{\circ}$ and molecules are connected mainly by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions.

Comment

Since Mock and co-workers characterized the chemical nature and the structure of cucurbit[6]uril (CB[6]; Freeman et al., 1981), many receptors based on glycoluril have been reported (Rowan et al., 1999; Hof et al., 2002; Lee et al., 2003; Lagona et al., 2003). We report here the crystal structure of the title compound, (I) (Fig. 1), a new receptor based on glycoluril. Selected bond lengths and angles are listed in Table 1. The crystal packing is mainly dictated by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2 and Fig. 2). The dihedral angle between the two adjacent five-membered rings in the glycoluril unit is 70.18 (9) ${ }^{\circ}$.

(I)

Experimental

p-Chloroaniline ($2.54 \mathrm{~g}, 20 \mathrm{mmol}$) and formaldehyde $(4.8 \mathrm{~g}, 80 \mathrm{mmol})$ were added to a stirred solution of diethoxycarbonyl glycoluril $(2.86 \mathrm{~g}, 10 \mathrm{mmol})$ in dimethylformamide (50 ml) under a nitrogen atmosphere. The mixture was stirred overnight and the solvent was

Figure 1
View of (I), showing the atom-labeling scheme, with displacement ellipsoids drawn at the 50% probability level.

Received 15 July 2005 Accepted 27 July 2005 Online 6 August 2005
evaporated to dryness and purified by column chromatography (hexane-EtOAc $=4: 1 \mathrm{v} / \mathrm{v}$) to obtain the title compound (yield 2.36 g , 40%) as a white solid. Crystals suitable for X-ray diffraction were grown by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (2:1) solution under ambient conditions.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{6}$	$\mathrm{Z}=2$
$M_{r}=589.43$	$D_{x}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.300$ (2) \AA 。	Cell parameters from 4340
$b=12.698$ (3) \AA	reflections
$c=14.428$ (4) \AA	$\theta=2.3-25.9^{\circ}$
$\alpha=103.836$ (17) ${ }^{\circ}$	$\mu=0.29 \mathrm{~mm}^{-1}$
$\beta=103.21$ (2) ${ }^{\circ}$	$T=292(2) \mathrm{K}$
$\gamma=105.087$ (19) ${ }^{\circ}$	Block, colorless
$V=1355.2$ (6) A 3	$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	4737 independent reflections 3709 reflections with $I>2 \sigma$
φ and ω scans	$R_{\text {int }}=0.052$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
(SADABS; Sheldrick, 1997)	$h=-9 \rightarrow 9$
$T_{\text {min }}=0.917, T_{\text {max }}=0.944$	$k=-15 \rightarrow 15$
10962 measured reflections	$l=-17 \rightarrow 17$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0603 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.113$	$(\Delta / \sigma)_{\text {max }}=0.001$
$S=1.08$	$\Delta \rho_{\text {max }}=0.22 \mathrm{e} \AA^{-3}$
4737 reflections	$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
375 parameters	Extinction correction: SHELXL97
H -atom parameters constrained	Extinction coefficient: 0.0066 (17)

Figure 2
Packing diagram of compound (I).

One of the ethyl groups (C18) was found to be disordered over two orientations. The occupancies of the disordered positions C18/C18 refined to 0.58 (2):0.42 (2). All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and refined as riding, allowing for free rotation of the methyl groups. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C) was applied.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University, National Natural Science Foundation of China (No. 20472022), and the Hubei Province Natural Science Fund (Nos. 2004ABA085 and 2004ABC002) for financial support.

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Freeman, W. A., Mock, W. L. \& Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.
Hof, F., Craig, S. L., Nuckolls, C. \& Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1508.
Lagona, J., Fettinger, J. C. \& Isaacs, L. (2003). Org. Lett. 5, 3745-3747.
Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J. \& Kim, K. (2003). Acc. Chem. Res. 36, 621-630.
Rowan, A. E., Elemans, J. A. A. W. \& Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 955-1006.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

